Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrical properties of CIGS/Mo junctions as a function of MoSe2 orientation and Na doping

Identifieur interne : 000141 ( Main/Repository ); précédent : 000140; suivant : 000142

Electrical properties of CIGS/Mo junctions as a function of MoSe2 orientation and Na doping

Auteurs : RBID : Pascal:14-0026986

Descripteurs français

English descriptors

Abstract

The electrical properties of Cu(In,Ga)Se2/Mo junctions were characterized with respect of MoSe2 orientation and Na doping level using an inverse transmission line method, in which the Cu(In,Ga)Se2 (CIGS)/Mo contact resistance could be measured separately from the CIGS film sheet resistance. The MoSe2 orientation was controlled by varying the Mo surface density, with the c-axis parallel and normal orientations favored on Mo surfaces of lower and higher density, respectively. The effect of Na doping was compared by using samples with and without a SiOx film on sodalime glass. The conversion of the MoSe2 orientation from c-axis normal to parallel produced a twofold reduction in CIGS/Mo contact resistance. Measurements of the contact resistances as a function of temperature showed that the difference in CIGS/Mo contact resistance between the samples with different MoSe2 orientations was due to different barrier heights at the back contact. Comparison between Na-doped and Na-reduced samples revealed that the contact resistance for the Na-reduced system was four times of that of the doped sample, which showed more pronounced Schottky-junction behavior at lower temperature, indicating that Na doping effectively reduced the barrier height at the back contact.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0026986

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrical properties of CIGS/Mo junctions as a function of MoSe
<sub>2</sub>
orientation and Na doping</title>
<author>
<name sortKey="Yoon, Ju Heon" uniqKey="Yoon J">Ju-Heon Yoon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Korea Institute of Science and Technology (KIST)</s1>
<s2>Seoul 136-791</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, College of Engineering, Korea University</s1>
<s2>Seoul 136-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jun Ho" uniqKey="Kim J">Jun-Ho Kim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, College of Engineering, Korea University</s1>
<s2>Seoul 136-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>WON MOK KIM</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Korea Institute of Science and Technology (KIST)</s1>
<s2>Seoul 136-791</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Park, Jong Keuk" uniqKey="Park J">Jong-Keuk Park</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Korea Institute of Science and Technology (KIST)</s1>
<s2>Seoul 136-791</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baik, Young Joon" uniqKey="Baik Y">Young-Joon Baik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Korea Institute of Science and Technology (KIST)</s1>
<s2>Seoul 136-791</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Seong, Tae Yeon" uniqKey="Seong T">Tae-Yeon Seong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, College of Engineering, Korea University</s1>
<s2>Seoul 136-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Jeung Hyun" uniqKey="Jeong J">Jeung-Hyun Jeong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Korea Institute of Science and Technology (KIST)</s1>
<s2>Seoul 136-791</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0026986</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0026986 INIST</idno>
<idno type="RBID">Pascal:14-0026986</idno>
<idno type="wicri:Area/Main/Corpus">000264</idno>
<idno type="wicri:Area/Main/Repository">000141</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt. : (Print)</title>
<title level="j" type="main">Progress in photovoltaics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Barrier height</term>
<term>Comparative study</term>
<term>Contact resistance</term>
<term>Copper selenides</term>
<term>Doped materials</term>
<term>Doping</term>
<term>Electrical characteristic</term>
<term>Gallium selenides</term>
<term>Glass</term>
<term>Indium selenides</term>
<term>Inverse problem</term>
<term>Molybdenum</term>
<term>Quaternary compound</term>
<term>Sheet resistivity</term>
<term>Silicon oxides</term>
<term>Solar cell</term>
<term>TLM method</term>
<term>Temperature dependence</term>
<term>Temperature effect</term>
<term>Thin film cell</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Caractéristique électrique</term>
<term>Dopage</term>
<term>Problème inverse</term>
<term>Méthode TLM</term>
<term>Résistance contact</term>
<term>Résistivité couche</term>
<term>Dépendance température</term>
<term>Effet température</term>
<term>Hauteur barrière</term>
<term>Etude comparative</term>
<term>Matériau dopé</term>
<term>Cellule couche mince</term>
<term>Cellule solaire</term>
<term>Molybdène</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Oxyde de silicium</term>
<term>Verre</term>
<term>Cu(In,Ga)Se2</term>
<term>SiOx</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Molybdène</term>
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The electrical properties of Cu(In,Ga)Se
<sub>2</sub>
/Mo junctions were characterized with respect of MoSe
<sub>2</sub>
orientation and Na doping level using an inverse transmission line method, in which the Cu(In,Ga)Se
<sub>2</sub>
(CIGS)/Mo contact resistance could be measured separately from the CIGS film sheet resistance. The MoSe
<sub>2</sub>
orientation was controlled by varying the Mo surface density, with the c-axis parallel and normal orientations favored on Mo surfaces of lower and higher density, respectively. The effect of Na doping was compared by using samples with and without a SiO
<sub>x</sub>
film on sodalime glass. The conversion of the MoSe
<sub>2</sub>
orientation from c-axis normal to parallel produced a twofold reduction in CIGS/Mo contact resistance. Measurements of the contact resistances as a function of temperature showed that the difference in CIGS/Mo contact resistance between the samples with different MoSe
<sub>2</sub>
orientations was due to different barrier heights at the back contact. Comparison between Na-doped and Na-reduced samples revealed that the contact resistance for the Na-reduced system was four times of that of the doped sample, which showed more pronounced Schottky-junction behavior at lower temperature, indicating that Na doping effectively reduced the barrier height at the back contact.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt. : (Print)</s0>
</fA03>
<fA05>
<s2>22</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrical properties of CIGS/Mo junctions as a function of MoSe
<sub>2</sub>
orientation and Na doping</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YOON (Ju-Heon)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KIM (Jun-Ho)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WON MOK KIM</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PARK (Jong-Keuk)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BAIK (Young-Joon)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SEONG (Tae-Yeon)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>JEONG (Jeung-Hyun)</s1>
</fA11>
<fA14 i1="01">
<s1>Korea Institute of Science and Technology (KIST)</s1>
<s2>Seoul 136-791</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science and Engineering, College of Engineering, Korea University</s1>
<s2>Seoul 136-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>90-96</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000500724620120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0026986</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The electrical properties of Cu(In,Ga)Se
<sub>2</sub>
/Mo junctions were characterized with respect of MoSe
<sub>2</sub>
orientation and Na doping level using an inverse transmission line method, in which the Cu(In,Ga)Se
<sub>2</sub>
(CIGS)/Mo contact resistance could be measured separately from the CIGS film sheet resistance. The MoSe
<sub>2</sub>
orientation was controlled by varying the Mo surface density, with the c-axis parallel and normal orientations favored on Mo surfaces of lower and higher density, respectively. The effect of Na doping was compared by using samples with and without a SiO
<sub>x</sub>
film on sodalime glass. The conversion of the MoSe
<sub>2</sub>
orientation from c-axis normal to parallel produced a twofold reduction in CIGS/Mo contact resistance. Measurements of the contact resistances as a function of temperature showed that the difference in CIGS/Mo contact resistance between the samples with different MoSe
<sub>2</sub>
orientations was due to different barrier heights at the back contact. Comparison between Na-doped and Na-reduced samples revealed that the contact resistance for the Na-reduced system was four times of that of the doped sample, which showed more pronounced Schottky-junction behavior at lower temperature, indicating that Na doping effectively reduced the barrier height at the back contact.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Problème inverse</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Inverse problem</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Problema inverso</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode TLM</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>TLM method</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método TLM</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Résistance contact</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Contact resistance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Resistencia contacto</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Résistivité couche</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Sheet resistivity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Resistividad capa</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Effet température</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Temperature effect</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Efecto temperatura</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Hauteur barrière</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Barrier height</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Altura barrera</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Cellule couche mince</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Thin film cell</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Célula capa delgada</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Molybdène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Molybdenum</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Molibdeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Oxyde de silicium</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Silicon oxides</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Verre</s0>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Glass</s0>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Vidrio</s0>
<s5>28</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>SiOx</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>027</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000141 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000141 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0026986
   |texte=   Electrical properties of CIGS/Mo junctions as a function of MoSe2 orientation and Na doping
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024